WK + Tuesday not consumable.

- 4. (a) Find the first five terms in the Taylor series about x = 0 for $f(x) = \frac{1}{1 2x}$.
 - (b) Find the interval of convergence for the series in part (a).
 - (c) Use partial fractions and the result from part (a) to find the first five terms in the Taylor series about x = 0 for $g(x) = \frac{1}{(1-2x)(1-x)}$.

- 5. The graphs of the polar curves r=4 and $r=3+2\cos\theta$ are shown in the figure above. The curves intersect at $\theta=\frac{\pi}{3}$ and $\theta=\frac{5\pi}{3}$.
 - (a) Let R be the shaded region that is inside the graph of r = 4 and also outside the graph of $r = 3 + 2\cos\theta$, as shown in the figure above. Write an expression involving an integral for the area of R.
 - (b) Find the slope of the line tangent to the graph of $r = 3 + 2\cos\theta$ at $\theta = \frac{\pi}{2}$.
 - (c) A particle moves along the portion of the curve $r = 3 + 2\cos\theta$ for $0 < \theta < \frac{\pi}{2}$. The particle moves in such a way that the distance between the particle and the origin increases at a constant rate of 3 units per second. Find the rate at which the angle θ changes with respect to time at the instant when the position of the particle corresponds to $\theta = \frac{\pi}{3}$. Indicate units of measure.

6. The Maclaurin series for ln(1+x) is given by

$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n+1} \frac{x^n}{n} + \dots$$

On its interval of convergence, this series converges to ln(1 + x). Let f be the function defined by

$$f(x) = x \ln\left(1 + \frac{x}{3}\right).$$

- (a) Write the first four nonzero terms and the general term of the Maclaurin series for f.
- (b) Determine the interval of convergence of the Maclaurin series for f. Show the work that leads to your answer.
- (c) Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Use the alternating series error bound to find an upper bound for $|P_4(2) f(2)|$.